If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-40x-395=0
a = 1; b = -40; c = -395;
Δ = b2-4ac
Δ = -402-4·1·(-395)
Δ = 3180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3180}=\sqrt{4*795}=\sqrt{4}*\sqrt{795}=2\sqrt{795}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-2\sqrt{795}}{2*1}=\frac{40-2\sqrt{795}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+2\sqrt{795}}{2*1}=\frac{40+2\sqrt{795}}{2} $
| 7+3=-2(3x-5) | | -2(x+8)-3=-19 | | 6+6=-2(4x-6) | | 6+6=-4(4x-6) | | 4x+8–7(x+1)=3x+6 | | 3(4x+8)=-16+28 | | 3(5x+8)=-28+37 | | 3(5x+8)=28+37 | | 2(12r+18)=20 | | 7a-3=3+6a+a | | 2/3(12r+18)=25 | | 2/3(12r+18)=22 | | -4(a-3)=13 | | 3x-10/4x+1=6 | | 3y+3=23-4y | | 10x+4=3x-18 | | 4a+3=a+ | | -2x+3=7x+8 | | x2x=254 | | 0.5x^2-10x+12=0 | | 0.2x+0.3(11/19)=0.5 | | x+2x=254 | | 0.02y+1.32y=1.19+y | | X+x2=256 | | -2a+27+8a=4a-7a | | X+y2=256 | | 5+2x=2x+6-1 | | 5x+15-4x=1 | | -4a+18+a=3a-7a | | 2=+4×3x-5-3x | | -14+-5x+x^2=0 | | -22=v-20 |